Electronics Inspection and Test

Examples of Counterfeit and Non-Conforming Electronics Hardware Industry Tools, Best Practices

Aaron DerMarderosian Jr.
Principal Systems Engineer
Raytheon Company

Morgan Deptola
Quality Control & Inventory Manager, TCG Components

Training Sessions- April 22nd, 16:45–17:15
April 23rd, 13:45-14:15
Outline

- Background & History
- Industry Issues- *Items that continue to challenge the supply chain*
- Standards & Best Practice- *Updates, where are we today?*
- Issues- *Detection, Analysis & Interpretation*
- Case Studies- *NC Supply Chain Examples*
- Case Studies- *NC Raytheon Examples*
- OEM Counterfeit- *Past Incidents & Evolving threats*
- Conclusions & Recommendations- *Training, Standards, Resources*
Background & History

✓ Domestic counterfeits: [70’s - 90’s]
 Crude re-marks, reject scavenging, mechanical samples- Incidence rate in-frequent

✓ Current Global counterfeits: [2000’s - Today]
 Above PLUS re-claimed E-Waste & clones, improved refurbish & remarking techniques
 ▪ Drastic increase in incident / detection rates
 ▪ Impacts entire electronics supply chain> OCMs OEM’s AD’s ID’s Brokers

✓ DOJ U.S. Counterfeit Ring Investigation: MVP Micro & VisionTech
 ▪ High profile cases prosecuted since, highlight how serious & pervasive this issue is
 ▪ DOJ / GAO estimate hundreds of thousands to Millions of counterfeit IC’s & components have infiltrated the supply chain

✓ SASC Hearings Nov. 2011: Government & Industry testimony
 Representation: MDA, GAO, SIA, Independent Distributors & OEMs

✓ NDAA 2012 - 2015: Anti-counterfeit laws passed, FAR & DFARS implementation continue to evolve & refine requirements!

Counterfeit IC’s impact the entire electronics supply chain
Industry - Challenges, Conferences, Standards

- **OCM adoption of EU RoHS & WEEE:** Implemented mid-2006
 - Non-uniform Industry adoption added complexity & confusion to the supply chain
 - Inconsistent implementation (04-07) - Part Numbers, Datasheets, PCN’s, Product Packaging
 - Reclamation requirements - Without domestic recycling policies provides an endless stream of E-Waste. Utilized by counterfeiters once chain of custody is lost

- **Conferences & Workshops:** Increased industry awareness
 - Components for Military & Space Electronics; Counterfeit Training - CMSE & CCAT (CTI)
 - CALCE U. Maryland Joint with SMTA - Counterfeit Symposium
 - U. Conn ARO / CHASE Workshop - Annual event, University of Connecticut
 - ERAI Executive Conference - Electronics Distribution (Presentations, training, panel sessions)
 - Diminishing Manufacturing Sources & Material Shortages - DMSMS Conference (DoD WG)
 - Media - LinkedIn (Interest Groups); Counterfeit Parts (H. Livingston, wordpress.com); RJO, PC - (R. Metzger, www.rjo.com)
 - MDA Workshops - Counterfeit Materiel Training, Govt. Contractor - OEM (Supports PMAP)

- **Industry Standards & Best Practices:**
 - SAE, iNEMI, TechAmerica, ECA, IEC, GIFAS, IDEA & ERAI
 - Standards under review / revision - Impact of DFARS 2012-D055 “Final Rule” (May 2014) and updated sourcing requirements, released in NDAA 2015 [S.2410/HR3979] Sect. 817

- **Industry, DoD & Government Awareness:** Dramatic Improvements
 - Analysis, interpretation disparities & knowledge gaps within the electronics industry - PERSIST

Requirements & standards evolving, as laws are refined w/ Industry SME Inputs
Counterfeit Products Risk Mitigation and Prevention: Raytheon

243-RP: Corp. policy includes procurement, controls, supplier requirements, based on AS 5553A (7.24.12)
El-03-38: SAS BU Plan, References RTN policy, calls out test verification procedures, sample size (8.29.14)

Supply Chain: Approved supplier requirements, includes CF risk mitigation, traceability, testing

167-RP: Corp. policy supplier audit process, articulates PSL requirements (12.12.14)

233-RP: Corp. policy defines minimum requirements for preferred suppliers, imposes “Q notes” (12.20.13)

TC 001: Imposes PSL test and inspection “Quality notes” requirements in supplier contracts (External)

IDEA: “Acceptability of Electronic Components Distributed in the Open Market”

 Chapter 16 [IDEA-STD-1010B] IDEA Inspection process guideline checklist
 Framework to define Quality Inspection workflow, generate process instructions & procedures

ERAI: “Screening for Nonconforming & Suspect/Counterfeit Parts” Updated July 2014
 Best practice document, Progressive Inspection & test, Identifies nonconformance attributes

SAE: “Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition”

AS 5553A Released Jan 2013- SAE International (Society of Automotive & Aerospace Engineering)
 Requirements flow down, to sub-tier suppliers procuring electronic parts, Rev. B in process

OEMs & Supply Chain: Authorized, Franchised, Independent Distribution
Standards & Training - Counterfeit Components & Materials

SAE: “Counterfeit Electronic Parts: Avoidance, Detection, Mitigation & Disposition”
 AS 6081: Nov. 2012- Mandatory practices for Independent Distributors, certifications in process
 AS 6496: Aug. 2014- Mandatory practices for Authorized Distributors, CB criteria & audits pending
 AS 6174: May 2012- Practices for parts and materials suppliers, released
 AS 6171: Initial draft pending- Testing & Analysis Methods, applies to Failure Analysis / Test Labs

Component Technology Institute: “Counterfeit Component Avoidance Program”
 CTI-CCAP-101 Established in 2008, Revision E-1
 - Mandatory practices for Independent Distributors
 - Detection / avoidance of acquisition & delivery of counterfeit electronic components

Inspection Certifications & Training:
 IDEA-ICE-3000- Inspector Certification Pre-requisites, IDEA training & inspection experience
 Counterfeit Component Avoidance Workshop (CTI)- 2 day hands on event hosted in a FA lab
 NASA JPL- Beginner to advanced workshops, offered at Industry conferences
 IDEA-STD-1010B- Offered through IDEA / IPC certified training centers (IE: EpTac)
 MDA Workshops- Counterfeit materiel training, provided to DoD suppliers

ALL Policies Procedures & Standards effected by DFARS & NDAA Updates!
Perform inspection- Utilize non-conformance criteria & accepted Industry practices (IPC / SAE / MIL-STD)

http://www.erai.com/CustomUploads/ca/sc/Screening_for_Nonconforming_Suspect_Counterfeit_Parts.pdf

ERAI Recommendations for Screening for Nonconforming and Suspect/Fraudulent/Counterfeit Parts

Counterfeit electronic parts have become a significant cause of worry in the electronics part supply chain. Most of the counterfeit parts detected in the electronics industry are either new or surplus parts or salvaged scrap parts. The packaging of these parts is altered to modify their identity or to disguise the effects of salvaging. The modification can be as simple as the removal of old marking and then adding new marking, or as complicated as recovery of a die and repackaging. (Source: Screening for Counterfeit Electronic Parts- Bhanu Sood and Diganta Das – Center for Advanced Life Cycle Engineering)

The presence of the below noted nonconforming conditions may indicate the part being inspected has been subjected to relabeling, refurbishing, and/or repackaging, processes synonymous with counterfeiting.

Documentation, Packaging & Shipping Inspection Revealed:

- □ Product was not shipped in the original manufacturer's packaging
 - □ Parts were packaged in third party/generic reel
 - □ Parts were packaged in third party/generic tray
 - □ Parts were packaged in third party/generic tube

- □ Product was improperly packaged
 - □ Not in ESD (ANSI/ESD520.20) packaging
 - □ Not moisture protected (3-STD-928)
 - □ Moisture indicator missing
 - □ Desiccant missing
 - □ HIC does not indicate humidity

- □ Mishandled/damaged packaging materials
 - □ Trays are warped, cracked, bent or damaged
IDEA Inspection Guidelines-
IDEA-STD-1010B (Ch. 16) Used by permission from IDEA www.idofea.org

Perform inspection- Utilizing industry accepted conformance inspection criteria (IPC / SAE / MIL-STD)

USE: 1010B Std + IDEA Guideline & ERAI Recommendations (complimentary processes)
Issues - *Detection, Analysis, Interpretation*

- Standards provide procedures, guidance and examples of compliant & suspect counterfeit / non-conforming components
- Techniques in visual, surface, data and inspection analysis & investigation techniques are not defined in the standards *(AS 6171 & Training required)*
- No Industry requirements for training & certifications *(Inspection / Detection Varies)*
- Counterfeit inspection methods are new in the industry, *CF techniques evolving*
- OCM quality non-conformances, can be misinterpreted as “suspect” counterfeit
 - Component history, construction knowledge & OCM engagement, *REQUIRED* to interpret results
- Analysis & data requirements in Industry consortia databases, *IS improving!*
 Minimum entry criteria established, early data entries lacked documentation / evidence to indict parts
- Parts categorized as *SUSPECT* require analytical tests to make determination. Cost prohibitive to most organizations

Updated examples illustrate some of these issues
Case Studies

Supply Chain & Raytheon

Counterfeit Detection / Interpretation Challenges
Supply Chain Case Example 1 - High volume flash memory; Training Issue

- Parts contained in OCM packaging. Labeling, Component finish / quality consistent with OCM

- Visual Inspection & surface tests executed per 1010B: for Authenticity (06 week 42)
 1. Barcode readout, verify component info.
 2. Inspect mold cavities
 3. Dimensions per datasheet
 4. Verify OCM markings, P1 location
 5. Top / Bottom surface Match
 6. Marking Permanency
 7. Surface Test (Blacktopping)
 8. No reported ERAI Instances
 9. Date code verified with supplemental EOL information

- Customer noted mold mark opposite Pin1 was textured, claimed part was re-surfaced, **lot rejected**

- Surface test in-correctly executed, results misinterpreted

- P1 mark is always smooth, alternate mold marks can be textured!

- Enhanced optical / textured images
 Revealed acetone and excess Burnishing smoothed part surface

- **Enhanced digital imaging highlights black top evidence. NONE present**

Training, test execution & Interpretation leads to false Indictments!
Supply Chain Case Example 2-

High volume flash memory; Database Issue, EU RoHS Interpretation

- OCM packaging & consistent component finish, pass 1010B QC inspection. No report history in ERAI database

- Customer questioned date code (06 week 32), ERAI database reports a LTB of 12/31/04. Incorrect info. entered in IHS

- OCM responds with PCN / EOL LTB date of 8/31/06, last ship date 11/30/06 (builds continue 6-12 months after LTB)

- Customer part number search indicates product is Tin/Lead, box states “Lead Free”

- RoHS transition year- Some OCMs DID NOT change part numbers or add LF markings

- OCM did not respond to tech. support LF request. **Customer accepted part on risk, verified parts were "Lead free" via XRF**

Industry is looking at ICs with a lot of scrutiny & are risk adverse!
Supply Chain Example 3 - EU RoHS Compliance; Inconsistent OCM Implementation

- RoHS & WEEE Legislation implemented in the EU in the 2006 timeframe

- Continues to cause confusion in the legacy supply chain. Various OCM’s implemented RoHS at different times using non-uniform marking methods

- In transition years- (04-07) Some OCMs DID NOT change part numbers or add LF markings

- Others marked outer packaging label, added symbols, prefix, suffix or changed part numbers

- Example OCM compliance notice provided, delineates between RoHS 5/6 & 6/6 RoHS with a suffix letter designation

- Language and designation in compliance document is confusing

- RoHS 5/6 = Tin/Lead plating, 80% Compliant RoHS 6/6 = Lead Free or 100% Compliant

- Implementation lends itself to CF remarking

RoHS Compliance = Lead Free? Depends, easy to remark & easily indicted!
Supply Chain Example 4-
PCI Bus Controller; Mask protection symbol removal not documented

• Several data sheet inconsistencies noted during inventory inspection, part verification
• Row #1- Logo, takes up 2 lines XYZ Co. PCI COMM CHIP
• Row #3- Contains letter instead of the Mask protection symbol, as indicated. Datasheet does not define this (Symbol NOT required for protection)
• Mask protection symbol- Efforts by OCM’s to protect discrete component forms & die surface layout. Intent to protect physical die artwork
• Row #4- Does contain a mask set revision code (defined in data sheet)
• Row #5- Missing, sub-contractor code. Datasheet does not clarify. Implies made at the OCM foundry
• Disclaimers- OCM reserves the right to make changes to product & datasheet without notice

Additional work & data analysis required for inspection
Supply Chain Example 5-
Precision Op-Amps; OCM Parameter Binning, Unconventional marking

- OCM packaging & consistent component finish, pass 1010B QC inspection **Date code: 2006 week 36**
- Component packaging & leads pristine, copper present on the lead ends, known device traceability
- EOL check indicates this product is still in production, low cost / reduced counterfeit risk
- OCM changes P/N by “Parameter Binning” these devices through test
- V offset: **OP277U A** = +/- 50uV; Drift +/- 1uV
 V offset: **OP277U** = +/- 20uV; Drift +/- 0.15uV
- Unconventional marking method used to bin the lot, raises concerns in today’s QC risk adverse inspection. Seen as “suspect”
- Not able to verify marking convention for date code
- ERAI reports found on this device for other issues. High volume / low cost devices can be a target for counterfeiters

New parts scrapped, cost / availability of device not worth selling
Supply Chain Example 6-
RS-485 Quad Line Rcvr.; Inspector Training, OCM Silkscreen Alignment

- OCM packaging & consistent component finish, pass 1010B QC inspection Passed ALL quality tests **Date Code: 2003 Week 26**
- Components appear brand new / un-used. Silkscreen alignment anomaly. Issue encountered, newer devices / certain OCM’s
- Components loaded in OCM tubes, taped & sealed, known origin device traceability
- EOL check indicates equivalent product in production, in alternate component form factor. Reduced counterfeit risk
- NO ERAI reports found for this supplier or device type, legacy technology
- Blemish in lead-plating during inspection noted as contaminant (Mark is from tube contact). Inspector retrained
- **Identified in 1010B, as SUSPECT**
- Another form factor DMSMS Issue product verified in support of legacy programs

New parts **scrapped**, cost / availability of device not worth selling
Supply Chain Example 7 - CMOS, Quad Op-Amp; Training, OCM Product Line Marking Convention

- OCM packaging & consistent component finish, pass 1010B QC inspection Passed ALL quality tests **Date Code: 2005 Week 27**
- Components appear brand new / un-used. In OCM packaging & Reel. Bag / Reel & packaging info. Match to point of OCM origin
- EOL check confirmed product is in production, common part made by OCM & multiple suppliers, Reduced counterfeit risk
- NO ERAI reports found on this supplier device type, common circuit technology
- QC Inspectors concerned by Font / Alignment change on Row #1 “7”
- OCM uses unconventional methods to Identify product lines, QC informed of Unique OCM marking
- **Cursory knowledge Required!** detailed datasheet w/ die size & circuit layout but part number marking convention, not listed!

Parts passed inspection, provided to customer
Supply Chain Example 8-
1-2 way opto-coupler / Isolator; Training, Customer Construction Knowledge

- Packaging, component finish, Dimensions, markings, surface Inspected to 1010B, Passed
- OCM uses alternate packaging methods, body & lead cut looks rough as a result. Leads, body, markings in new / unused condition
- EOL / database check verified parts still in production & has not been reported
- Discrete component provider offers “packaged” footprints for CCA attachment. Lot from a reputable Authorized Distributor
- High volume, special case components DO NOT always follow IC OCM Quality Standards!
- Components sold to customer with details communicated about appearance
- Customer QC rejected parts for suspect resurfacing, NO evidence provided
- Withheld return of parts despite sharing data / Information related to these part types

Training and research on OCM construction & Q levels required
Raytheon Example 1 -
Fixed Delay Line, Data I/O ; Training, Construction Knowledge

- Components provided to FA lab as “suspect counterfeit”
 - Failure during CCA assembly Lead solderability Issue, de-wetting from solder pads
 - Components indicted as “suspect” Based on appearance due to counterfeit awareness
 >> Surface sanding marks evident & poor quality ink marking
 >> Component package appearance seems rough / damaged

- SEM-EDS Analysis Revealed
 - Intermetallic formation Beneath the Tin/Lead, caused the de-wetting, Supplier plating issue
 - Supplier provides custom timing devices based on customer’s circuit design application
 - Part markings, surface finish consistent with manually assembled specialty components
 > Fixed Digital Delay Lines (DDLs) > Time Delay Units (TDUs)
 > Bite Line Filters > Low Noise Amplifiers (LNAs) > RF Filters (LP, HP, BP)

Components from Stores provided along with failures
Raytheon Example 1 -
Fixed Delay Line, Data I/O; Sanding Marks, Poor Construction & Print Quality

Consistent Sanding Marks, From Manual Assembly

Manually stamped Ink Marks

Component wall epoxied in place, Cavity filled with potting & sanded

All dimensions & lead formation MEET PRINT

Supplier Issue indicted as *counterfeit* based on cursory knowledge
Raytheon Example 2 -
High Freq. Amplifier- IF AMP; OCM Revision / DS updates / Design tolerances

- Components acquired to support a 20 board build for legacy program upgrades. 17 components per board
- Components obtained from approved ID, purchased from their approved supplier. Previously owned by Raytheon, sold as excess inventory!
- Updated CF requirements instituted Q notes requiring authenticity & electrical testing
- Passed Supplier tests & incoming inspection
- Amps. failed during CCA electrical test (low gain) & indicted as suspect counterfeit due to physical differences. Components had 2004 DC
- Components with an older date code remaining in stores worked! OCM discontinued part in 2009
- OCM revised component 4x during production, lead frame, wire bond & mold changes. Lead width failed tolerance & paddle width marginal
- OCM confirmed effects of longer ground loop on gain
- CCA design did not optimize circuit to provide gain in nominal range (db roll-off shifted to the right)
- PCN not released, the effect of ground loop gain changes at frequency not documented in the datasheets!

Amps. replaced with legacy components date code 2000
Added requirements do not always yield positive results!
OEM Counterfeit Incidences

Examples- Raytheon Past History, Evolving Threats
Remarked Parts- **FY 2010-11**

- Coating used to cover original “ghost” markings date code 9917 (1999 Week 17) then remarked with date code 0418 (2004 Week 18)
- Xilinx discontinued this part in 2002

Visual & Surface Tests
Lead Frame & Die- FY 2010-11

Lead Frames Different

Die Layouts Different

X-Ray evaluation examines differences
Logo & Wrong Die- **FY 2010-11**

Should be **Cypress VIC068A-GMB**
VME Interface Controller

Found inside - **IDT 49C465**
64 BIT Error Detection & Correction

Crude package level remarking
Detection Methods- Non-destructive

CSAM pulse echo method

Transducer

H₂O Coupling

Area of interest
The red box (gate) indicates the depth of reflected signal and image information.

Manufacturer’s performance speed markings
3C as opposed to buried 6C

Optical Image

CSAM Images at the same depth (gate position) but with different signal gain levels for image enhancement

Blacktop material chemically removed confirms hidden markings revealed non-destructively w/ CSAM

CSAM imaging reveals sub-surface markings
FA Commercial Counterfeit Incident
5962-8771501CX ; Dual Op-Amp, May 2012

Customer:
- Requested RCA of failed devices
- Known good & failed devices provided

Follow on Analysis
- Marking Differences noted
- X-ray & Optical Die differences noted
- Multiple Die Inside
- Linear Tech Confirmed these were counterfeit

ISSUES:
- Many long lead components (previous slide) acquired PRIOR to NDAA 2012
- Latest legislation applies to all materials in stores, regardless of acquisition date. Effects stock
Lead Extensions
Legacy Voltage Comparator - Evolving Techniques

Genuine Device Voltage Comparator

Suspect Device Top Sanded

Solder Plating Uneven - Bend in Lead Detected

Suspect Lead Micro-Section

Kovar Lead Exiting Glass Seal in Can

Iron Lead Welded to Kovar to Extend Length

Solder plating obscures lead extensions
Incident: Op-Amp Sept. 2011

L00024H/883 (MIS-19837/04) Hi-Rel Op-Amp out of production since 1998

Terminations breaking during lead-forming process, leads visually appeared undisturbed.

No evidence of lead weld deformation.

Sanding marks; Marking inconsistencies noted.
Two termination constructions revealed during cross-sectional analysis

Iron-Kovar & Kovar-Kovar extensions evident & structurally weaker
Recent Incident- MIS19837-88 Apr. 2012

Reported by Incoming Inspection
- Suspect lead dimensional issues
- Failed electrical test, 60% yield

Materials Failure Analysis
- Leads breaking at a noted weld point
- Markings failed solvent permanency tests, even peeling with tape
- Peeling and flaking plating, failed external visual inspection

Part Information & History
- Out of production, $91.00 each
- Purchased from ID Source in 2010
- ID source acquired from MVP?
- 3rd Confirmed T0 can incident in 4 years
Summary, Recommendations - Analysis, Training

- Legacy OCM component quality [some suppliers] varied in the 1995 – 2010: MIL-STD dis-continuation; market demand / cost competition; legacy quality programs did not scale with demand; automated packaging / integration / inspection processes required improvement for high volume manufacturing (AOI / AXI)

- Industry standards & best practices defines inspection criteria but do not provide guidance on interpretation

- Execution of visual and surface inspection analysis technique knowledge gaps exist within the supply chain - Training, AS 6171, OCM engagement, Experience!

- Interpretation is subjective, requires working knowledge of IC supplier assembly / packaging construction, OCM markings & finish quality levels - Review of lessons learned repository / consortia databases (of similar non-conformances) should be a required for analysis. There are always exceptions to the rule!
 - Not called out in requirements, procedures or work instructions
 - Improves interpretation, increases knowledgebase

Establish a DoD - Industry working group
Improve Analysis, Training & Reporting
Summary, Recommendations - Reporting & Keeping Informed

- Minimum reporting guidelines for analysis, supporting images & documentation, **HAVE BEEN ESTABLISHED** to improve data collection & reporting
- Continue participation in workshops, conferences, networking events, roundtable discussions: **We collectively learn from sharing analysis and results, increases experience knowledgebase & reduces errors**

Resources & Links:

1. **Raytheon- Counterfeit Avoidance Team activity**
 Component Technology Network (CTN) & Counterfeit Parts: **Internal websites**
 CAT resources: **Participate in internal / External industry activities**
 Access to: Q notes, enterprise resources, procedures, standards, papers, presentations
 Raytheon Counterfeit Part Tool (RCPT): **Internal Incident Database**
 - Perform Searches
 - Supplier Assessments
 - Review supplier Info.
 - Create RCPT Incident Report

2. **Counterfeit Parts- Industry Blog, Wordpress:** counterfeitparts.wordpress.com
 - Tracks Federal Register, industry & standards activity related to counterfeit components & Materials

3. **Standards Gap Analysis:** counterfeitparts.files.wordpress.com/2014/09,stds_gap_analysis_140915.pdf
 - Related to CF prevention, detection, avoidance, published / maintained by H. Livingston (Sept. 15, 2014)
 - Maps high level detection / avoidance elements. Select standards to optimize organizational CF mitigation

4. **Utilize Networking Media-** www.linkedin.com Several Relevant Interest Groups

Industry involvement is critical to success!

3/4/2015 33
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT&L:</td>
<td>Acquisition, Technology & Logistics; DoD undersecretary (OSD)</td>
</tr>
<tr>
<td>AD:</td>
<td>Authorized Distributor</td>
</tr>
<tr>
<td>AOI / AXI:</td>
<td>Automated Optical / X-Ray Inspection, Process improvement</td>
</tr>
<tr>
<td>ASL / PSL:</td>
<td>Approved or Preferred Supplier List</td>
</tr>
<tr>
<td>BU:</td>
<td>Business Unit</td>
</tr>
<tr>
<td>CAT:</td>
<td>Counterfeit Avoidance Team (Enterprise wide)</td>
</tr>
<tr>
<td>COTS:</td>
<td>Commercial Off The Shelf (components, products)</td>
</tr>
<tr>
<td>CB:</td>
<td>Certification Body</td>
</tr>
<tr>
<td>CPB:</td>
<td>Customs Protection & Borders</td>
</tr>
<tr>
<td>CPI/CI:</td>
<td>Critical Program Information / Counterintelligence</td>
</tr>
<tr>
<td>CTN:</td>
<td>Components Technology Network (Enterprise wide)</td>
</tr>
<tr>
<td>DFARS:</td>
<td>Defense Federal Acquisition Regulation Supplement</td>
</tr>
<tr>
<td>DHS:</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>DLA:</td>
<td>Defense Logistics Agency</td>
</tr>
<tr>
<td>DLAD:</td>
<td>Defense Logistics Acquisition Directive</td>
</tr>
<tr>
<td>DMS:</td>
<td>Diminishing Manufacturing Supply (source)</td>
</tr>
<tr>
<td>DoD:</td>
<td>Department of Defense (U.S.)</td>
</tr>
<tr>
<td>DoJ:</td>
<td>Department of Justice (U.S.)</td>
</tr>
<tr>
<td>ECA:</td>
<td>Electronics Components Association Standards</td>
</tr>
<tr>
<td>EHS:</td>
<td>Environmental Health & Safety</td>
</tr>
<tr>
<td>EOL:</td>
<td>End Of Life (System Refurbishment / Upgrades)</td>
</tr>
<tr>
<td>ERAI:</td>
<td>Electronic Resellers Association Incorporated</td>
</tr>
<tr>
<td>ETMA:</td>
<td>Engineering Technology & Mission Assurance</td>
</tr>
<tr>
<td>FD:</td>
<td>Franchised Distributor</td>
</tr>
<tr>
<td>GAO:</td>
<td>Government Accountability Office (U.S.)</td>
</tr>
<tr>
<td>GIDEP:</td>
<td>Government-Industry Data Exchange Program</td>
</tr>
<tr>
<td>GIFAS:</td>
<td>French Aerospace Industries Association</td>
</tr>
<tr>
<td>ICE:</td>
<td>Immigration & Customs Enforcement</td>
</tr>
<tr>
<td>IEC:</td>
<td>International Electrotechnical commission</td>
</tr>
<tr>
<td>IC:</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>ID:</td>
<td>Independent Distributor</td>
</tr>
<tr>
<td>IDEA:</td>
<td>Independent Distributors of Electronics Association</td>
</tr>
<tr>
<td>INEMI:</td>
<td>International Electronics Manufacturing Initiative</td>
</tr>
<tr>
<td>IP:</td>
<td>Intellectual Property, patented or trade secret body of work</td>
</tr>
<tr>
<td>ITAR:</td>
<td>International Traffic in Arms Regulations</td>
</tr>
<tr>
<td>KPA:</td>
<td>Key Process Area</td>
</tr>
<tr>
<td>Legacy:</td>
<td>Previous generation system (Military / Aerospace)</td>
</tr>
<tr>
<td>LF:</td>
<td>Lead Free</td>
</tr>
<tr>
<td>LMS:</td>
<td>Learning Management System, Raytheon Training tool</td>
</tr>
<tr>
<td>LTB:</td>
<td>Last Time Buy</td>
</tr>
<tr>
<td>MDA:</td>
<td>Missile Defense Agency</td>
</tr>
<tr>
<td>MIL Spec:</td>
<td>Military Specifications</td>
</tr>
<tr>
<td>MIL-STD:</td>
<td>Military Standard (specifications)</td>
</tr>
<tr>
<td>NC:</td>
<td>Non-Conformance, Electronic Components, Hardware, Material or Process</td>
</tr>
<tr>
<td>NHA:</td>
<td>Next Higher Assembly</td>
</tr>
<tr>
<td>OCM:</td>
<td>Original Component Manufacturer</td>
</tr>
<tr>
<td>OEM:</td>
<td>Original Equipment Manufacturer (Systems)</td>
</tr>
<tr>
<td>OSD:</td>
<td>Office of the Secretary of Defense (U.S.)</td>
</tr>
<tr>
<td>PCN:</td>
<td>Product Change Notice</td>
</tr>
<tr>
<td>PCLP:</td>
<td>Product Life Cycle Process</td>
</tr>
<tr>
<td>POC:</td>
<td>Point Of Contact</td>
</tr>
<tr>
<td>PPP:</td>
<td>Program Protection Plan</td>
</tr>
<tr>
<td>Prime:</td>
<td>System Design Lead / Provider</td>
</tr>
<tr>
<td>QC:</td>
<td>Quality Control</td>
</tr>
<tr>
<td>RESA:</td>
<td>Raytheon Enterprise Supplier Assessment</td>
</tr>
<tr>
<td>RoHS:</td>
<td>Reduction of Hazardous Substances</td>
</tr>
<tr>
<td>RTN:</td>
<td>Raytheon</td>
</tr>
<tr>
<td>SAE:</td>
<td>Society of Automotive & Aerospace Engineering</td>
</tr>
<tr>
<td>SEM-edx:</td>
<td>Scanning Electron Microscopy-energy dispersive x-ray spectroscopy</td>
</tr>
<tr>
<td>SASC:</td>
<td>Senate Armed Services Committee</td>
</tr>
<tr>
<td>SIA:</td>
<td>Semiconductor Industry Association</td>
</tr>
<tr>
<td>SME:</td>
<td>Subject Matter Expert</td>
</tr>
<tr>
<td>SMT:</td>
<td>Surface Mount Technology</td>
</tr>
<tr>
<td>Supplier:</td>
<td>Sub-system component provider, Sub-Contractor</td>
</tr>
<tr>
<td>WEEE:</td>
<td>Waste Electrical & Electronic Equipment Directive</td>
</tr>
<tr>
<td>WG:</td>
<td>Working Group</td>
</tr>
<tr>
<td>XRF:</td>
<td>X-ray fluorescence</td>
</tr>
<tr>
<td>Infringement:</td>
<td>Describes a violation of rights on intellectual property, copyright or patent</td>
</tr>
</tbody>
</table>
With the implementation of expanded regulations & rules, how we inspect, test & forensically analyze sub-system components should be evaluated, along with updated training material. Industry best practice SAE standards, IDEA & ERAI inspection / analysis criteria continue to evolve, as counterfeiting methods & other supply chain issues are un-covered. In this presentation, we will look at suspect counterfeits and non-conforming electronics analyzed in the laboratory. Several supply chain OCM examples will be provided.

How do we differentiate between counterfeits and non-conforming hardware when observed anomalies at times can be so similar? How do we categorize these, when there are issues related to chain of custody, access to a full suite of analytical tools is limited / cost prohibitive and the OCM is not obligated to provide assistance? When it comes to obsolescence & DMSMS legacy related issues, this becomes a serious problem and a area of risk & concern.

We will compare IDEA-STD-1010B Inspection guideline (Ch. 16) to a recently updated (July 2014) comprehensive non conformance inspection procedure, provided by ERAI. A listing of resources and Links related to the counterfeit Issue, a comparison of industry standards to assess which are a best fit for a particular technology sector, along with best practice recommendations will be provided in this presentation.