

Insight \mathcal{A} nalytical \mathcal{L} abs

Contrasting Quality Inspections and Engineering Inspection for Counterfeit Detection

2013 ERAI Executive Conference April 19, 2013 General Session Gary F. Shade Insight Analytical Labs www.ial-fa.com

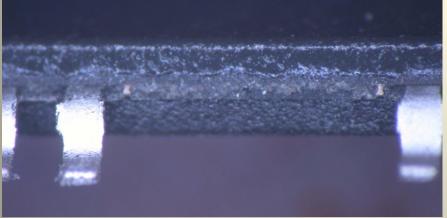
Outline

- Introduction and Motivation
 - Dynamic Nature of challenge
- Inspection Methods
 - Quality Inspection
 - Engineering Inspection
 - Examples
- Resources
- Future Expectations
- Summary

Introduction

- Electronic products are all around us in our homes, our work, as well as in transportation, medical, entertainment, and communication equipment. Perhaps even inside us!
- Failure Analysts inspect components for quality and reliability every day. They can be well suited to inspect for suspect counterfeit issues.
- As an industry, we have overcome quality and reliability issues before and we will again.
 - Need continued focus on awareness and continuous improvement
 - If there is one thing I leave you with today. It is the expertise that failure analysts bring to this issue.

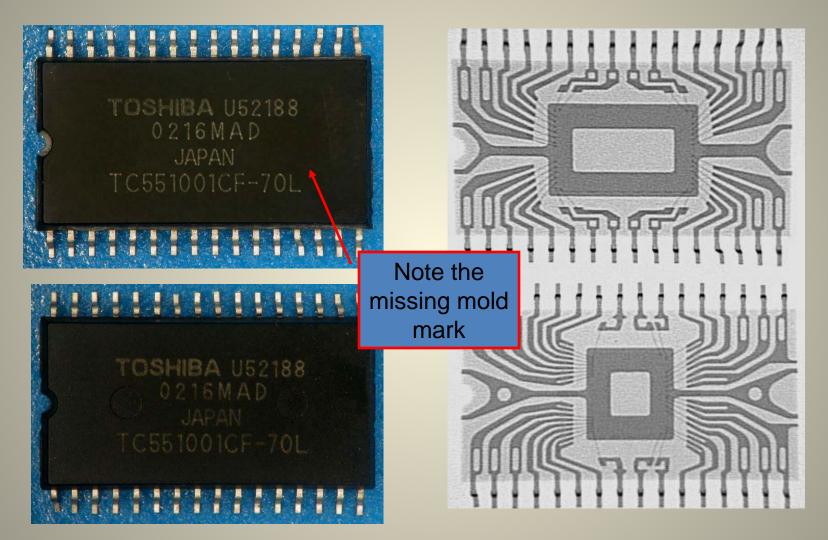
Background:


- Early counterfeiting
 - Blacktopping
 - Competitor part (pin compatible)
 - Upgrade: Mil-Spec, Temp, Speed, Reliability
 - Re-cycled part (removed from PCB)
 - Re-worked to meet RoHS (or just remarked)

However, The challenge is dynamic

Change of date code

• 2 different Samples with blacktopping


Sample-1

Sample-2

Top surface has been repainted. Detected in side view on one device, by comparing top to bottom on another (texture).

Incorrect part

By today's standards, these are easy to detect.

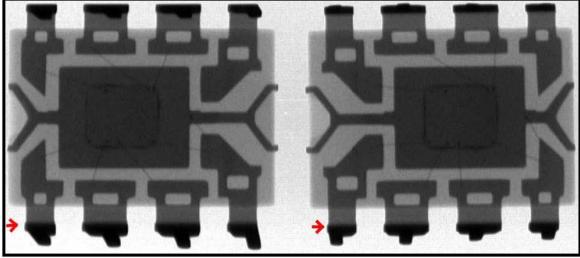
More recent challenges:

- Present and coming challenges
 - Everyday the diversity and quantity of end of life components increases resulting in more oddities.
 - Wider range of components (passives, batteries, MEMS)
 - Counterfeiting groups get better informed, equipped and mature.
 - Improved resurfacing before remarking
 - Improved refurbishing
 - Mature operations with trained operators
 - Counterfeits are being identified in field returns.

Quality Inspections

- Quality Inspections follow standards, for example:
 - IDEA 1010A
 - IDEA 1010B
 - Now includes package decapsulation
 - Die manufacturer marks & logos
 - Process Technology
 - Die function (Memory, Logic, Analog, etc.)
 - SAE 5553A
 - CCAP 101

Quality Inspections

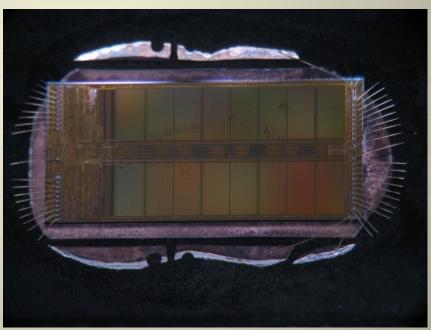

- Each of the standards provides excellent checks for known issues.
- Since they are based on known issues, they are not as well suited for emerging concerns or situations that don't fit previous experience.
 - New blacktopping methods
 - Parts from same vendor, multiple sites
 - Wide variety of components (discretes, passives, MEMS, multi-chip in package, new package styles, etc.)
 - Quality escapes
 - Can be falsely identified as suspect counterfeits.

Engineering Inspections

- Goes above and beyond Quality Inspections
 - Comparison to industry norms
 - Comparison to historical database (over 2000 entries)
 - Identify and Resolve oddities
 - Identify and Setup additional testing as required.
- What engineers are involved:
 - Quality & Reliability Engineers
 - Test & Product Engineers
 - Failure Analysis Engineers

Analysis Takes Experience

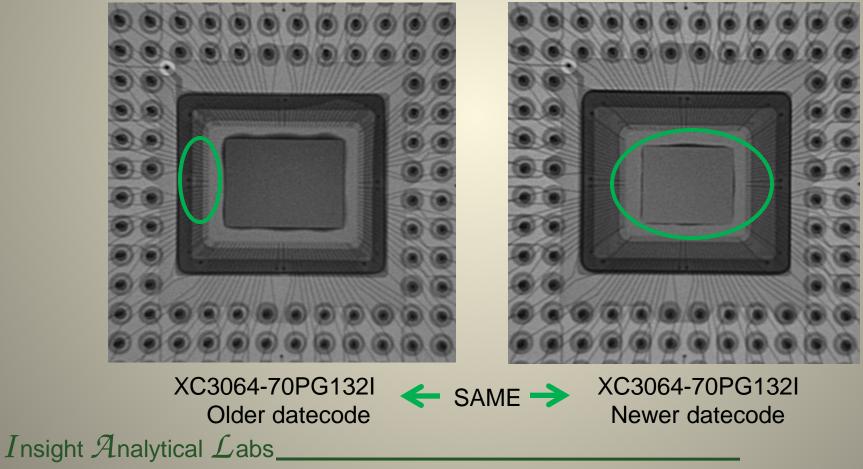
- Some situations demand more than an exemplar part.
- For example: Two identical packages, but interior is a mirror image.



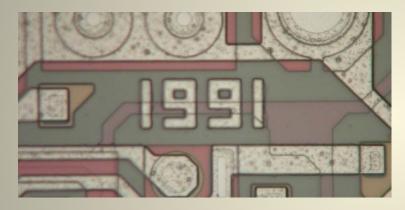
- Part would be fully functional and meet quality standards. But it would not match an exemplar part.
- Resolution required contact with packaging experts (engineers) to confirm standard packaging conditions.

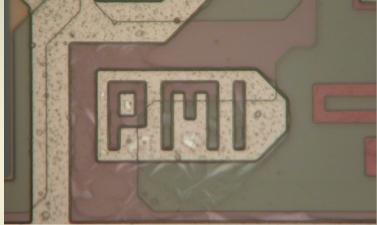
Incorrect part in "same lot"

- Example: Part can be detected by standard Quality Inspection
 - Intel memory with same P/N and date code.



Customer requested decapsulation after X-ray showed the two devices did not match.


Die size alone can be deceiving


- Example: Part difficult to detect accurately by standard Quality Inspection
- Same product with a "Die Shrink". Exemplar part is not very useful.

Analysis Takes Experience Missing or mis-matched manufacturer.

- Parts apppear counterfeit, but are not:
 - PMI = Analog Devices

- Analog IC produced in the PMI fab acquired by Analog.
- Despite the date, this was a recent example.

Decision required knowledge of company history.

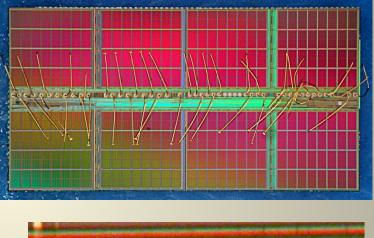
More Examples of Acquisitions

Internal mark does not match the package marking.

- Analog Devices purchased PMI
- Intel and AMD cross-licensing
- Intel acquisition of Level1
- Texas Instruments acquisition of Burr-Brown and National
- Conexant acquisition of Brooktree
- Motorola purchase of Cherry Semiconductor
- Motorola spin-off of Freescale and ON Semiconductor
- Crystal acquired by Cirrus Logic
- Fairchild/Schlumberger/National mergers & acquisitions
- •ETC., etc. etc.

Example of Straight-forward Match Texas Instruments and Cypress

Texas InstrumentsCypressTCM320AC36A7C1021AImage: Comparison of the state of th


Markings on die are rarely a perfect match.

Remarking example

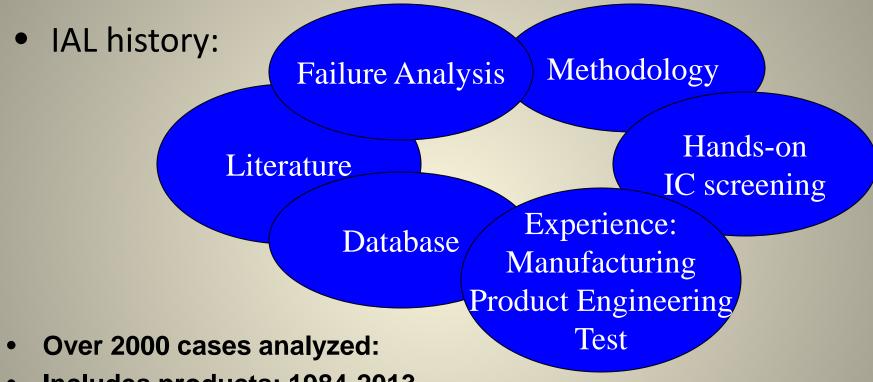
Micron memory with varying datecodes and revisions.

All of these were marked with same product number and Revision level. Insight \mathcal{A} nalytical \mathcal{L} abs______

Die Markings

• Multiple revisions of same IC; however, company was purchased. Note the up-revision of each mask level.

Failure Analysts have the tools to detect fraud and quality issues.


Resources

- Engineering expertise can be found in a variety of places (for example):
 - Failure Analysis Service Companies
 - Electronic Test Service Companies
 - Quality and Reliability Service Companies
 - Independent consultants
- What to look for:
 - Years of experience with products; inside and out
 - Familiarity with suppliers and variety of components
 - Experience with components back to 1980s.
 - Experience with Quality and Counterfeit Inspections.

Engineering Approaches

- A Failure Analyst can apply knowledge of the industry, and components to analyze each suspect component:
 - Silicon ICs, and discretes
 - Optoelectronics
 - MEMS
 - GaAs
 - MLCC and other capacitors
- Suspect components are compared to analysts' experience and digital database of information.
- Components are understood from inside out.
 - From design through manufacture and test.

Resources

- Includes products: 1984-2013,
 - Silicon, GaAs
 - MEMS
 - Discretes, passives, Optoelectronics

Over 125 Man-years of experience

Where is the next Counterfeit Threat?

- New component types are being found that are also counterfeit (connectors, relays, and batteries, etc.).
- Expect refurbished parts to look "like new".
- Continued pressure from part shortages due to supply chain issues.
- Strategies to detect counterfeits in one market may not work in another (geographic areas and market segments).

Future, emerging

- Product Design for Anti-tampering
 - Built-in design features (like JTAG) to authenticate devices.
 (Some memory makers already doing this.)
 - manufacturer. (Analogous to VISA hologram.)
 - Enhanced ID tracking (especially for lot packaging)
 - Hard to copy logos and part marking to identify
 - Advanced DNA marking now required in some cases.
- Standards in industry
 - Tighter standards on part marking and documentation methods that support traceability.
 - Teaming of companies (data sharing) to reduce risk and cost of mitigation.

Conclusions

- Counterfeits only escape detection for a limited time.
 Our goal should be to reduce the time to detection
- Methods and resources exist to address this need.
 - Quality Inspections are a necessary first step.
 - Engineering inspections can reduce risk further:
 - When there is no Exemplar part
 - Part oddities and wider variety of components
 - Correctly identify quality issues and failures from field
 - Establish additional testing & inspection when required.
- The Electronics industry has faced similar challenges in the past and will rise to the challenge again.


Insight \mathcal{A} nalytical \mathcal{L} abs_

PARTILITY MANAGER

gshade@ial-fa.com

(719) 510-2020

